
 Downloading Programs
On a first-name basis

Aug 28, 1990

Previous application management
Application page programs heretofore have been allocated manually in the

VME local stations. One found some free space in non-volatile memory and
downloaded the code for an application page into it. Then the starting address
was entered on the index page to associate a page with the program.

Difficulties with that scheme arose when the number of downloaded programs
got to be large. (Once upon a time, there were but four.) It was hard to manage
the memory available efficiently. One tended to select starting addresses on 4K-
byte boundaries just to keep it simpler, resulting in fragmentation.

Another difficulty arose when downloading to another system. One must take
care that a previous version of the program was not currently executing on that
system. If it were, a crash would likely result as the new code comes raining
down upon the executing code. This crash is not easily recoverable, since the
system will try to recall the same page after it aborts. After 15 times, the system
aborts more thoroughly by exiting to SBug, requiring local manual intervention
at that station to recover.

A third problem with the previous scheme was that updating new versions of
code required copying to the various local stations one at a time. Only strict
adherence to conventions can insure that the program is downloaded in the same
area of memory on separate nodes. (There is no system requirement for such.)
Different nodes may have different needs for a repertoire of page applications.

A fourth problem was lack of checking to insure that a program residing in non-
volatile memory was not corrupted by an errant happenstance in a local station.

Named-based programs
By supporting communications by program name, we insulate the user from

having to deal with manual memory allocation and at the same time, we can be
free of concern for locating a given program at the same address in multiple
nodes. A new system table called CODES is used to maintain information about
each downloaded program. Its layout is as follows:

Downloading Programs Aug 28, 1990 page 2

minute second

 type

checksum

ptr to download area

size

ptr to executable area

 name

hour copy countdaymonthyear

version date

The 4-character program type distinguishes programs used for different
purposes. Values such as PAGE, LOOP, TASK can be used to distinguish page
application programs, local application programs and task initialization
programs. The 4-character program name serves to distinguish programs of the
same type. The program size is next, followed by the longword checksum, which
is a sum of words. The download ptr is a ptr to the allocated area in non-volatile
memory. This is followed by the ptr to the area in on-board ram where the
program was copied for execution. The date serves to identify the version of the
program. The copy count shows the number of times the program was copied
into on-board ram for execution. It is cleared when a new version is downloaded.

New listype to support downloading
Support for name-based downloading requires a new listype (#76). The ident

format is as follows:

node

type

name

offset

Both the type and name codes are included to fully identify the program being
referenced. The offset is a longword to permit downloading of large programs of
the future, when 16-megabyte ram chips are commonplace. Special offset values
are used for beginning and ending the download process.

To download a program, an offset value of –1 is used to send the type, name and
size information to the receiving node. If the receiving node has the program in
its CODES table, it deletes it and frees its memory, establishing a new incomplete

Downloading Programs Aug 28, 1990 page 3
successfully, although a currently-executing version can still be running, since it
runs in on-board memory, which is separate from the download area. The size is
used to allocate memory to receive the downloaded program, and that download
ptr is placed in the entry.

Settings are delivered with offset values ≥ 0 (but not +1) to fill the download area
with the program. After that is finished, which may require multiple settings, a
special setting is made with the offset value of +1. The data sent with that setting
is the checksum longword and optionally the version date. The next time the
page is called up, in the case of a PAGE-type program, the new program will be
checked for corruption using the checksum longword and copied into on-board
ram for execution. In the case of a LOOP-type program, the next time the closed
loop is enabled, the new version will be used. If such a program is enabled
during the download operation (and executing out of on-board ram), it will
automatically be disabled and automatically re-enabled on the next cycle,
resulting in automatic and orderly transition to the new version.

A data request using this listype deals with the same data as the setting does.
Notice that no program header is required, as all the size and name information
is carried in the CODES table entry. The data returned for an offset=–1 are the
entire contents of the CODES table entry. Offset values ≥ 0 return arbitrary
portions of the program code itself.

CODES Table Management
An enhanced version of the download application page allows inspection of

the various CODES table entries. One can disable a downloaded program from
further invocations and free its memory, much as one would delete a file in a
disk operating system to get more room for storing new files.

To maintain the free space in one contiguous piece, the system moves allocated
blocks around at system reset time to eliminate fragmentation before any
programs are put to use. It has no side effects, since only the CODES table knows
where they are. Any other references to these programs are by name.

